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Abstract

In many phase transformation processes, natural convection controls the freezing or melting rate of the material.
The kinematics of the solid±liquid interface, which are coupled with bulk convection in the melt, play an important

role in determining the microstructure of a solidi®ed material. Although the fundamental problem of
thermoconvective instability of a single-component in a horizontal liquid layer has been studied extensively, there
still exist additional complexities which arise during solidi®cation due to the presence of nonmelting components.

This study addresses the problem of Rayleigh±BeÂ nard instability of a liquid layer in the presence of suspended
particles undergoing a phase transformation. A linear stability analysis determined the e�ects of the particles and
phase-change on the conditions for incipient convection. The analysis reveals that the concentration of and heat

transfer between particles a�ect the stability of the system. # 2000 Elsevier Science Ltd. All rights reserved.
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1. Introduction

It is recognized that ¯uid mechanics, in general, and

buoyancy-driven ¯ows, in particular, play a critical

role in determining interfacial traits of a solidifying
material; ¯uid motion adjacent to a solidifying inter-

face a�ects the local thermal and solutal ®elds which
control the geometric, dynamic and thermodynamic

characteristics of the interface [1,2]. For instance, con-

vection during fabrication or solidi®cation processing
of cast metal matrix composites a�ects the distribution

of particulates in the composites, in turn in¯uencing

the properties of the material. During the past two

decades, there has been great interest in establishing

the role of thermal convection in processes undergoing

phase change. Phase transformation from liquid to

solid (or vice versa) is a phenomenon central to a wide

range of manufacturing and natural processes. More

recently, the growth of crystals from melt or other

solidifying aqueous solutions in the materials proces-

sing industry has generated a considerable number of

investigations in phase change phenomena.

Although thermoconvective instability in a hori-

zontal ¯uid layer driven by buoyancy e�ects has

been studied extensively [3±5], there exist additional

unresolved complexities associated with processing of

mixtures due to the presence of a nonmelting com-

ponent. This fundamental study addresses hydrodyn-

amic stability issues during solidi®cation of such
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Nomenclature

CL Speci®c heat capacity of liquid at constant
pressure

CP Speci®c heat capacity of particles at
constant pressure

D Di�erential operator

f Temperature perturbation variable
l=2p/
kc

Wavelength of the incipient convection cells

~g Gravitational acceleration vector
g Perturbation variable for the solid tempera-

ture
h The particle heat transfer coe�cient,

h=2kp/r
k Separation constant or wave number
L Length of the solidi®cation system

L1 (rp/rL)(@/@t)ÿO2

L2 (@/@t)+1
L3 (@/@t)ÿ1
N0 Number density of particles
~n Unit normal vector
P Pressure

Pr Prandtl number
q k 2

r Constant particle radius
Ra Rayleigh number

Rc Critical Rayleigh number for system with
particles

Rac Critical Rayleigh number for system absence

of particles
s Vertical component of particle velocity, v
St Stefan number
~ti Tangential vectors on the interface,

i=1, 2
T1 Temperature of upper rigid plate on

general solidi®cation model

To Temperature of lower rigid plate on
general solidi®cation model

TM Interface melting temperature

u Velocity vector for liquid, u=u(u, v, w )
v Velocity vector for particles, v=v(r, x, s )
w Velocity component in the z-direction for

the liquid
wÃ Vertical velocity perturbation variable
x First Cartesian direction

y Second Cartesian direction
DTL Temperature di�erence across the porous

layer
H Gradient operator

H� Divergence operator
H2 Laplacian operator

Greek symbols
a Ratio of the liquid thermal di�usivity to the

solid
aL Thermal di�usivity of the bulk liquid region
aS Thermal di�usivity of the solidi®ed region

L Solid±liquid aspect ratio, Ls/LL

b Coe�cient of volumetric thermal expansion
g Bulk concentration density of particles

s Complex growth rate
G Particle aspect ratio, r/Z0
HSL Latent heat per unit area of solid
k Thermal conductivity

K 6pmLr
Z Interface position coordinate
Ẑ Normalized perturbation variable for the

interface position
Z0 Length of the liquid region
Zt Time rate of change of the interface

mL Dynamic viscosity of the liquid region
nL Kinematic viscosity of the liquid
r Ratio of the density of the liquid to the

solid
rL Density of the liquid region
rS Density of the solidi®ed region
s Real part of the complex growth rate, s

F Pattern planform
j Heat loading, [rpcpg ]/[rLcL(1ÿg )]
O1 (4pr 2N0h )/(rLcLaL)
O2 6prN0

O3 (4pr 2N0h )/(rpcpaL)

Subscripts
b Basic state
c Critical

f Fluid
L Liquid
p particle

s Solid
o Reference or equilibrium
0, 1,

2,
3, . . .

Sequence of functions or constants

Superscripts
4 Vector
' Perturbation

^ Normal mode perturbation
� Nondimensional perturbation
± Basic state (overbar)
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mixtures by modeling the solid±liquid slurry of a

composite mixture as a particle-laden horizontal
liquid layer solidifying in a gravitational ®eld. One
of the main di�culties of studying the solid±liquid

slurry is that physically, the particulates are not sus-
pended in a homogeneous fashion; however, their
subsequent motion or settling presents another im-

portant problem beyond the scope of this investi-
gation. The settling event in the production of

particulate metal matrix composites evolves by the
dynamic and thermodynamic interactions with the
solidi®cation process rather than prior to it [6].

Consequently, such parameters as the solidi®cation
rate, convection, thermal characteristics, geometry of

reinforcement or particles all a�ect the hydrodyn-
amic and thermodynamic interactions during solidi®-
cation and must be considered for the optimization

of the production of such materials. Thus, this ana-
lytical study focuses on the e�ects of nonmelting
suspended particles and phase change on incipient

convection.
The conditions for the onset of buoyancy driven

convection during the heating of a liquid layer from
below were initially treated experimentally by
BeÂ nard in 1900 and theoretically by Rayleigh in

1916 [5]. Since then, various facets of this problem
have been examined and practical applications

abound. Theoretical investigations of the BeÂ nard
problem incorporating suspended particles have
shown that the presence of the particles acts to

destabilize the system [7]. Neglecting thermal inter-
actions between the particles and particle buoyancy,
the authors demonstrated that the decrease in stab-

ility was due solely to the additional heat capacity
of the particles. Recent studies [8,9] have incorpor-

ated ¯uid±particle thermal interaction and demon-
strated the e�ect on the stability of the system.
Theoretical examination of such a BeÂ nard system,

independent of particles with freezing from above,
indicates that the presence of solidi®cation also acts
to decrease the convective stability of the system

[10]. A recent study by the author illustrated that
the solidi®cation and boundary conditions in a par-

ticle-laden system greatly a�ect the onset of convec-
tion [11]. In this paper, a manifestation of the
¯uid±particle laden system, which consists of a par-

tially solidi®ed material enclosed between two paral-
lel horizontal boundaries, is considered.

This study focuses on the e�ect of particle thermal
interactions, particle buoyancy, heat loading, solid±
thickness ratio and volume fraction on the incipient

convection in the interstitial liquid. By parametrically
changing the aforementioned parameters, a greater
understanding of the in¯uence of such variables on the

convective stability of a particle-laden mixture was
ascertained.

2. Problem formulation

A quiescent horizontal layer of a pure ¯uid in a

gravitational ®eld heated from below will not always
remain so in the presence of an adverse density gradi-
ent beyond a threshold value capable of giving rise to

¯uid motion. This observation may be applied to
examine the solidi®cation of a particle-laden liquid
layer enclosed between two rigid, parallel, thermally

dissimilar, horizontal plates of in®nite extent, a dis-
tance L apart, in a gravitational ®eld as shown in Fig.
1. The analytical model is formulated under the
assumptions that the liquid layer is heated from below

and cooled from above such that the liquid in the
upper part of the layer is frozen, and the e�ective ther-
mophysical and transport properties of the system are

homogeneous and isotropic. Fluid motion within the
layer is described via a Newtonian, Boussinesq model
of the Navier Stokes equations. Motion due to density

change upon phase change is negligible. The melt±
freeze front is assumed to be a thin surface of negli-
gible thickness that remains at the melting point of the
phase-change material. The temperature at the bottom

plate is maintained such that the melting temperature,
TM, is bounded between the lower plate constant tem-
perature, To, and the upper plate constant tempera-

ture, T1 (To > TM > T1). Therefore, there is a solid±
liquid interface at z=Zo, 0 < Zo < L (Fig. 1). Buoy-
ancy force on the particles is considered and inter-par-

ticle interaction is negligible under the assumption that
the distance between particles is quite large compared
with their diameter, however, ¯uid±particle thermal

exchange is taken into account. The presence of the
particles in the liquid manifests as an extra force term
in the equations of motion for the particles and the
governing liquid momentum equation. As such, the

force exerted on the liquid by the particles is equal and
opposite to that exerted by the particles on the liquid.
Since there exists no bulk motion in the solid, the tem-

perature ®eld within the solidi®ed layer is described by
the thermal energy equation

@Ts

@ t
� asr2Ts: �1�

For the liquid, the temperature ®eld may be
obtained from a simultaneous solution of the thermal

energy and continuity equations, together with the
modi®ed Boussinesq model of the momentum
equation. These are expressed, respectively, as

rLcL�1ÿ g�
�
@

@ t
� ~u � r

�
TL

� 4pr2Nh�Tp ÿ TL� � kLr2TL, �2�
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r � ~u � 0 �3�

and

rL�1ÿ g�
�
@

@ t
� �~u � r�

�
~u

� ÿ�1ÿ g�rP� rL�1ÿ g�b�TL ÿ Tref �~g � ~k

� mL�1ÿ g�r2 ~u� KN�~vÿ ~u�: �4�

The equations of motion and continuity for the par-
ticles are

rPcPg

�
@

@ t
� ~v � r

�
TL � 4pr2Nh�Tp ÿ TL�, �5�

r � ~v � 0 �6�

and

rPg

�
@

@ t
� �~v � r�

�
~v

� rLgb�TL ÿ Tref�~g � ~k� KN�~uÿ ~v�: �7�

The boundary conditions on the interface are the con-
tinuity of temperature,

TL � Ts � TM, �8�

where the interface curvature due to undercooling of
the melt is neglected, and the conservation of energy,

rsHsL
@Z
@ t
� jksrTs ÿ kLrTLj � ~n: �9�

Also de®ned on the interface is the conservation of
mass (kinematic condition),

rL�~u � ~n� � �rL ÿ rs�
@Z
@ t
~k � ~n �10�

and the no-slip condition,

~u � ~t1 � ~u � ~t2: �11�
The temperatures on the bounding surfaces are con-
stant,

@z � 0, TL � T0 and @z � 1, Ts � T1: �12�

3. Stability analysis

Initially, the stationary system is in a static equi-
librium state with no ¯uid or particle motion and a

planar interface at z=Zo. The pertinent variables, u
(and v ), x (and y, z ), t and p are normalized, respect-
ively, as aL/Z0, Z0, Z0

2/aL, and (rLvLaL)/Z0
2.

The basic state under consideration is that of a stag-
nant layer of liquid (no settling), with a hydrostatic
pressure distribution, a uniform particle distribution,

and a purely conductive temperature distribution. In
normalized form, the basic state becomes (denoted by
variables with bars on top),

Fig. 1. Solidi®cation model for particle-laden mixture.
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�v � 0, �u � 0,
d �p

dz
� Ra �TL � ~k, �TL � 1ÿ z,

�Ts � 1

1ÿ L�
�1ÿ z�,

�13�

where T
-
s is de®ned between the limits of z = 1 and

L�=L/Zo. The basic state perturbations representing
the response due to a slight freezing of the system are
de®ned as

~u � u 0, ~v � v 0, Z � 1� Z 0, Ts � �Ts � T 0s ,

TL � �TL � T 0L, p � �p� p 0:
�14�

Substituting these expressions into the governing

equations and linearizing in the disturbance quantities,
yields: for the solid

@T 0s
@ t
� as

aL

r2T 0s, �15�

for the liquid

�1ÿ g�
�
@T 0L
@ t
ÿ w 0

�
� O1�T 0p ÿ T 0L � � �1ÿ g�r2T 0L, �16�

r � u 0 � 0 �17�

and

Prÿ1�1ÿ g�
�
@u 0

@ t
� �u 0 � r�u 0

�
� ÿ�1ÿ g�rp 0 � �1ÿ g�RaT 0L � ~k� �1ÿ g�r2u 0

� O2�u 0 ÿ v 0 �, �18�

where w ' is the vertical component of the perturbation
velocity, ~u

0
: The governing disturbance equations for

the particles are

g

�
@T 0p
@ t
� v 0 � r �TL

�
� O3�T 0L ÿ T 0p �, �19a�

r � v 0 � 0, �19b�

gPrÿ1
rp

rL

@v 0

@ t
� gRaT 0L � ~k� O2�v 0 ÿ u 0 �: �19c�

The linearized boundary conditions on the interface
(z=1) for the perturbation model are

T 0s � ÿZ 0
@ �Ts

@z
, T 0L � ÿZ 0

@ �TL

@z
, �20�

u 0 � �1ÿ r�Z 0x, v 0 � �1ÿ r�Z 0y, w 0 � �1ÿ r�Z 0t �21�

and

rStPr
@Z 0

@ t
� L

@T 0s
@z
ÿ @T

0
L

@z
: �22�

Appearing in the energy equation is the nondimen-
sional parameter:

L � Lÿ Z0
Z0

� Ls

LL

� ksDTs

kLDL

, �23�

where z=Z0 is the position of the planar interface or
thickness of the liquid layer, LL, and z=L is thickness
of the combined solid±liquid system, L=Ls+LL. For

a small L, Lÿ1 may be considered as the equivalent
Biot number for heat transfer from the liquid to the
solid [8]; also, L measures the amount of solid present
in the system.

The surface boundary conditions become

@z � 0, T 0L � 0, @z � 1, T 0s � 0: �24�

Solution of the preceding set of equations results in a

su�cient condition to ascertain the stability boundary
of the particle-laden liquid layer. After eliminating the
pressure from the liquid momentum equation by tak-

ing the curl twice and retaining only the z-component
of the resulting equation yields

�1ÿ g�Prÿ1 @
@ t
r2w� �1ÿ g�r2�r2w� ÿ O2�r2w

ÿ r2s� � Ra�1ÿ g�r2
HTL

� 0, �25�

where the primes have been dropped and s is the z-
component of the particle velocity, v. Combining Eqs.

(16) and (19a±c) thus eliminating v and Tp, produces

s � jÿ1L2fL3uÿ �r2 ÿ O1�TLg ÿ O3TL �26�
for the particle velocity, and the thermal energy for the

liquid region becomes

jÿ1L1L2fL3wÿ �r2 ÿ O1�TLg ÿ O3L1TL

� RaTLk̂ÿ O2w: �27�

The variables become separable under the normal
modes assumption, yielding solutions of the form

fTs, TL, w, Zg � fg�z�, f �z�, ŵ, ẐgestF�x, y�, �28�
where the time constant, s=sr+isi, contains sr, the

growth rate, and si, the frequency of the disturbance,
and F(x, y ) is the plan form function which deter-
mines the cellular structure of the ¯uid motion and
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satis®es the two-dimensional wave or membrane
equation

r2
HF � ÿk2F: �29�
Substitution of the normal modes into the linear per-

turbation model (Eqs. (15), (25) and (26)) results in the
normal-mode disturbance equations for the solid

�D2 ÿ q�g � 0 �30�
and for the liquid

�D2 ÿ q�2ŵ� gRa
1� g

�D2 ÿ q� fÿ qRaf � 0 �31�

and

ŵ � ÿ 1

1� j

�
D2 � q� Rc

O2O3

�
f, �32�

where it has been assumed that the principle of

exchange of stability is valid and the marginal stability
curve is characterized by a growth rate of zero, i.e.
s=0. This assumption is valid due to experience that
the same analysis for the BeÂ nard system is applicable

for the addition of a solidi®cation boundary as well as
suspended particles [6,8,9]. The boundary conditions
are transformed as

g�L� � 0, g�1� � ÿZ
L

�33�

for the solid region, and

ŵ�0� � 0, Dŵ�0� � 0, f �0� � 0
ŵ�1� � 0, Dŵ�1� � 0, Df �1� � LDg�1�

�
�34�

in the liquid region.

4. Solutions

4.1. Solid region solution

It is noticed that the general solution for the solidi-

®ed layer may be obtained independent of the liquid
equations, resulting in

g�z� � C1 sinh�kz� � C2 cosh�kz�: �35�
Use of the boundary conditions (Eq. (33)), yields the
temperature pro®le in the solid as

g�z� � ÿẐ sinh�k�1� Lÿ z��
L sinh�kL� : �36�

4.2. Liquid region solution

Combining the disturbance equations (Eqs. (31) and

(32)) in the liquid region eliminates the vertical velocity
component, wÃ , and forms a single-variable pertur-
bation equation in terms of the normal mode pertur-

bation temperature, f(z ). Accordingly, the single-
variable temperature perturbation equation transforms
to a sixth-order, linear, homogeneous equation,

�D2 ÿ q�2�D2 ÿ qa� f �z� � qRa�1� j� f �z�

� Rag
1� g

�1� j��D2 ÿ q� f �z�

� 0 �37�

with six linear, homogeneous boundary conditions.
Such conditions are determined by applying the solid
solution and evaluating the continuity and thermal
energy equations at z=0, 1, given as

z � 0, f � �D2 ÿ qa� f � D�D2 ÿ qa� f � 0
z � 1, Df� k coth�kL� f � �D2 ÿ qa� f � D�D2 ÿ qa� f � 0

�
�38�

where

a � 1� 2

9
G2j

Ra

q
: �39�

Note that in the limit of no particles (g=0 and j=0),
and no solidi®cation (L=0), the system reduces to the
governing system for a classical BeÂ nard system with rigid

boundaries. The sixth-order system constitutes an eigen-
value problem from which the onset of instability can be
derived.

The essential task is to ®nd the lowest occurring
Rayleigh number, namely Rac, and wave number,
namely kc, for prescribed values of g, j, G and L
which lead to a solution of f (z ) that satis®es the gov-

erning system. The critical parameters were determined
parametrically using a shooting method in conjunction
with a minimization program via a Runge±Kutta. inte-

gration method. For details of the numerical scheme,
the reader is referred to Sparrow et al. [12].
In the asymptotic limits of L=0 and L 4 1 for

g=0 the documented results of the critical Rayleigh
and wave numbers of 1707.8 and 3.117 and 1492.815
and 2.815 for the classical BeÂ nard system and the sol-

idi®cation analog [10], respectively, were recovered,
thus validating the numerical scheme.

5. Results and discussion

The linear stability analysis has two experimentally
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veri®able results: the critical temperature di�erence for

the onset of convection and the corresponding critical
wavelength. For a range of values for the particle con-

centration, g, heat loading, j, particle diameter ratio,
G, and solid thickness, L, varying between limiting

values, the incipient conditions for convection for a
pure liquid solidifying in the presence of suspended

particles are determined. The results are in terms of a
reduced critical Rayleigh number, rc=Rac/1707.8, and

a reduced critical wave number, kÃc=kc/3.117, where
the parameters are scaled based on the classical sol-

utions of the BeÂ nard problem of 1707.8 and 3.117 for
the critical Rayleigh and wave number respectively.

The reduced critical Rayleigh numbers as a function of
the heat loading, solid thickness and particle concen-

tration appear in Figs. 2±4.
Figure 2 illustrates the destabilizing e�ects of the

heat loading and the solid thickness. For the classical
case of no particles (g=j=0), it is shown that rc(L4
1)=0.875. This result is identical to those identi®ed
by Davis et al. [10] for a bulk liquid layer. However,

increasing the heat loading in a system with a constant
concentration of particles has a more pronounced

destabilizing e�ect than the solid/liquid interface. Fig.
2 indicates that for a constant concentration of par-

ticles and various heat loading values, the solid thick-
ness reduces the critical Rayleigh number 13% as the

solid grows from zero to a ratio of 1; beyond which
the values change by less than 1%. Moreover, it

demonstrates that a 5% concentration of particles,
heat loading of 100 and solid thickness ratio of one

reduces the critical Rayleigh number nearly 85%, (rc(L
4 1)=0.1557), severely destabilizing the system. A
heat loading of 5 (rc(L=0)=0.885), destabilizes the

system on the same scale as that of increasing the solid
thickness, L 41. Thus, the system is sensitive to the

thermal interactions of the liquid and the particles.
Figure 3 shows that for a system with no solidi®ca-

tion the critical Rayleigh number is decreased by 40%
with a particle concentration of 1%, which is consist-

ent with theory [8]. When the particle concentration is
increased from 1 to 5%, the stability is reduced by an

additional 60% compared to the classical solution for
the bulk liquid layer. Likewise, for the constant heat

loading case, the increase in solid thickness decreases
the stability by as much as 87.4% for the limiting case

of g=10% and L 41 (rc(L 41, g=10%)=0.126),
compared to the 84% reduction for the previously sta-

ted case (rc(L 4 1, g=5%, j=100)=0.1557). For
g=1%, the reduction in stability is identical to that ex-

perienced in the classical BeÂ nard case for L41, a re-
duction of 12.5%. However, a reduction of 13 and

14.7% is experienced in the critical Rayleigh number
for 5 and 10%, respectively, as for L41.

The combined e�ects of the heating load and the
particle concentration are displayed in Fig. 4. The

heating has a strictly decreasing in¯uence on the stab-
ility of the system for any concentration of particles.

Scanlon and Segel [7] indicated that this was the sole
reason for the destabilization, however, as the particle

concentration increases in conjunction with an increas-
ing heating load, the loss of stability is further pro-

Fig. 2. Reduced critical Rayleigh number, rc, vs. solid thickness, L, for g=5%, G=1%.
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nounced. Fig. 4 indicates that there is a 90% reduction

in the critical Rayleigh number for L=3, g=10%, and

j=100 (rc(L=3)=0.09). A greater reduction results

from an increase in particle concentration from 1 to

5%, compared to an increase from 5 to 10%.

While increasing the heat loading destabilizes the

system, the particle diameter ratio, G, counters the

trend for increasing values as observed in Fig. 5. These

results are consistent with those of Rhazi et al. [8].

This result appears counter intuitive, as increasing the

particle diameter ratio would seem consistent with

increasing the concentration of particles which is desta-

bilizing as shown in Fig. 5 and consistent with pub-

lished results [7,8]. However, increasing the particle

Fig. 3. Reduced critical Rayleigh number, rc, vs. solid thickness, L, for j=70, G=1%.

Fig. 4. Reduced critical Rayleigh number, rc, vs. heat loading, j, for L=3, G=1%.
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diameter ratio may be considered like decreasing the

layer thickness with a ®xed concentration, which is

analogous to increasing the permeability of a liquid

saturated tortuous system which results in a stabilizing

e�ect [11,13]. The destabilizing e�ect of the solid thick-

ness is evident as Fig. 5 shows that for no solid, the

system is more stable than the classical BeÂ nard case.

When the solid thickness is increased to a value of

one, the system becomes less stable than the classical

case for small ratios rising to the value of unity as the

particle diameter ratio is increased.

The critical wave number is una�ected by the heat

loading but Fig. 6 shows that the solid thickness ratio

acts to decrease the size of cells whereas the particle

Fig. 5. Reduced critical Rayleigh number, rc, vs. particle diameter ratio, G, for L=1, and g=5%.

Fig. 6. Reduced critical wave number, kc, vs. solid thickness, L, for j=50, G=1%.
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concentration acts to increase the size. In the classical

case of no particles and solidi®cation, the size of the

cells are reduced 10% in the limit L 4 1. For g r
10%, the critical wave number is greater than that for

the BeÂ nard case independent of the amount of solid

present as shown in Fig. 6. Fig. 7 shows plots of the

critical streamlines and temperature eigenfunctions pat-

terns for two-dimensional roll cells. At the onset of

convection, Fig. 7a displays roll cells for the classical

BeÂ nard problem with no particles or solidi®cation.

Figs. 7b,c compared to the classical case display the

e�ects of the initiation of growth of the solidi®cation

Fig. 7. Critical stream function and temperature eigenfunction respectively for di�erent values of the j, g, L and G over one period.

(a) j=0, g=0, L=0 and G=0; Rac=1707.76, kc=3.117. (b) j=0, g=0, L=3 and G=0; Rac=1492.65, kc=2.815. (c) j=50,

g=1%, L=0.2 and G=1%; Rac=1065.76, kc=2.984. (d) j=50, g=1%, L=3 and G=1%; Rac=2891.17, kc=3.0618.
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layer on the velocity and temperature contours. As this
layer becomes thicker, the cells are constrained and

decrease in size and the wavelength increases as shown
in Figs. 7b,c where the wavelength, g=2p/kc. Cells
development is independent of heat loading and par-

ticle concentration and totally dependent on solid
thickness established in Fig. 7. Mathematically, the
solidi®cation interface acts to slightly disrupt the verti-

cal midplane symmetry of the system as con®rmed by
the departure of the temperature eigenfunctions from
the symmetrical patterns in Figs. 7b±d when compared

to Fig. 7a. Moreover, this phenomenon is demon-
strated in the boundary conditions (Eq. (38)). As the
solid becomes more pronounced the eigenfunctions
become more deformed. Nonlinear theory is needed to

further examine the e�ects of the solid thickness on the
development of the motion beyond criticality.

6. Closing remarks

The introduction of particles in the solidifying sys-

tems has varying e�ects on the onset of instability of
the system depending on di�erent values. The heat
loading has a greater e�ect on the stability of the sys-

tem by increasing the e�ective heat capacity of the
liquid. Thus, thermal disturbances are more readily dif-
fused across the layer initiating thermoconvective
motion. Along with heat loading, the concentration of

particles decreases the threshold for the onset of non-
linear convection. When the particles and solidi®cation
of the system are considered together, the stability of

the system or the potential for incipient convection is
greatly increased. Experimentalists and manufacturers
must concern themselves with the thermodynamic

properties of additive particles as well as the concen-
tration of such additions in any solidifying system.
Convective motion of the liquid will not only further
redistribute particles but will also assist in the develop-

ment of a cellular interface; thus, decreasing the pre-
dictability of ®nal distribution of particulates in such
systems.

This study has considered the incipient convection
of a liquid layer in the presence of suspended particles
and solidi®cation. The motion of the liquid not only

a�ects the ®nal distribution of the particles but also
the interfacial traits of the solidifying material. This
analysis has demonstrated that great care must be

given to the possibility of incipient convection when all
variables are considered. The results indicate that par-

ticles have a de®nite e�ect on the stability of the sys-
tem and should be accounted for in any manufacturing

or research inquiry.
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